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VIRAL BIOCONTROL OF INVASIVE VERTEBRATE PESTS

Viral biocontrol has twice been used successfully in Australia to control, but not eradicate, an
important terrestrial pest species, the rabbit (Oryctolagus cuniculus). Lessons from those attempts
(McColl et al., 2014) have been used to develop a viral biocontrol program for common carp
(Cyprinus carpio), a cyprinid teleost fish that is the major vertebrate pest in Australian inland
waterways (Koehn, 2004).

Cyprinid herpesvirus 3 (CyHV-3; Hedrick et al., 2000) was recognized as a potential biocontrol
agent for carp (McColl et al., 2014), and it is now a central element of the National Carp Control
Plan in Australia (http://www.carp.gov.au/). However, for most of the world, common carp are
an important food source, and among the most farmed fish globally (Ronen et al., 2003). In carp
aquaculture, CyHV-3 can be a devastating pathogen (Sunarto et al., 2005), and therefore, unlike
Australia, the emphasis throughout much of the world is on viral control rather than carp control.

It is perhaps because of this dichotomy that numerous misconceptions and misunderstandings
have arisen about CyHV-3 itself, and about the viral biocontrol program for carp in Australia. Here
we present our view on each of these problematic issues.

MISCONCEPTIONS AND MISUNDERSTANDINGS

CyHV-3 Can Infect Fish, and Other Animals, Apart From Carp
The susceptibility of at least 22 species of fish to infection with CyHV-3 has been tested
(summarized in Boutier et al., 2015). While none showed clinical signs of disease, viral DNA was
detected by polymerase chain reaction (PCR) tests in at least 10 species, although always in small
numbers of each species tested, and, when present, always in low copy numbers (Fabian et al., 2013).
Similar results were found for plankton, freshwater mussels and some crustaceans (Kielpinski et al.,
2010; Minamoto et al., 2011). These findings led to the view that many species of fish, and some
invertebrates, could be infected, but not affected, by CyHV-3. However, none of these early studies
used reverse transcriptase-PCR (RT-PCR) to prove that viral replication (the presence of viral
mRNA) occurred in non-carp species (known as non-target species, NTS, in the context of viral
biocontrol). An attempt by El-Matbouli and Soliman (2011) failed for technical reasons (Yuasa
et al., 2012).

McColl et al. (2016b) not only tested the susceptibility of a range of animals to the virus, but they
also used high doses of virus and conditions that favored virus infection. Apart from clinical and
pathological examinations of NTS, tissues fromNTS were also screened for viral DNA by PCR, and
any DNA-positive samples were then examined by an RT-PCR (Yuasa et al., 2012) for viral mRNA.
Of 1,355 samples screened for viral DNA, 109 were weak false-positives because all were negative
for the presence of viral mRNA.
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In summary, there was no evidence for any NTS being
infected, let alone affected, by CyHV-3. These results are
supported by the absence of substantiated disease reports due to
CyHV-3 in any other species throughout the world.

Mutations in CyHV-3 DNA, or

Recombination With Other Viruses, Could

Change the Host-Range of Subsequent

Viruses
While the specificity of the laboratory strain of CyHV-3 seems
clear, further questions arise about the potential for genetic
changes to occur in the field following release of the virus,
and whether these changes could alter the host-range of the
original virus. Lessons from field observations on the two rabbit
biocontrol viruses in Australia, the myxoma virus (MYXV)
and rabbit hemorrhagic disease virus (RHDV), partly address
these questions (McColl et al., 2014). Despite mutations being
recognized in the field for both MYXV (present in Australia for
over 60 years; Kerr et al., 2015) and RHDV (present for over 20
years; Mahar et al., 2016), there have been no reports of either
virus crossing species barriers in Australia.

Evolutionary studies (Geoghegan and Holmes, 2017) have
suggested that it can never be certain that a biocontrol virus will
not cross a species barrier. However, it was also demonstrated
that, while host-jumping may occur with any DNA virus (such as
CyHV-3), these jumps are invariably less frequent than for RNA
viruses, and, when they do occur, the jump is invariably into a
taxonomically closely-related species (Geoghegan et al., 2017). It
is relevant that, firstly, there are no native cyprinids in Australia,
and, secondly, that two species of native catfish, the most closely
related native fish to carp in Australia, showed no evidence of
virus replication when challenged with CyHV-3 (McColl et al.,
2016b). Geoghegan et al. (2017) also noted that, for herpesviruses,
host-jumping occurs on time-scales of millions of years, not the
decades that will be required to control carp in Australia if CyHV-
3 is complemented with another control measure (McColl et al.,
2016a).

Recently, Gao et al. (2018) reported the first evidence for
recombination in CyHV-3. In Australia, a virome study is
underway to identify endemic viruses of carp, and those that
could potentially recombine with CyHV-3. However, there are
no compelling field observations overseas to suggest that genetic
changes, of any sort, in CyHV-3 are likely to alter its host
specificity.

CyHV-3, Alone, Will Control Carp in

Australia
A critical lesson from viral biocontrol of rabbits in Australia
has been that, if a biocontrol virus is to be successful, it
must be complemented by another broad-scale control measure
(McColl et al., 2014). This has been a step-wise learning process.
While the use of MYXV revealed that a virus, alone, will not
be completely effective, the use of RHDV then demonstrated
that, although long-standing regional controls for rabbits (for
example, poisoning, destroying rabbit warrens, trapping) could

prolong viral efficacy, such methods were still insufficient for
sustained control (Saunders et al., 2010).

From the outset, we have promoted the use of a genetic
strategy(ies) or the next generation(s) of virus as essential
complementary broad-scale controls for CyHV-3 (McColl et al.,
2014, 2016a). Our critics, however, have chosen to ignore our
commitment to these additional measures (Lighten and van
Oosterhout, 2017; Marshall et al., 2018). Each of the currently
available genetic strategies has deficiencies, either because they
would involve genetically-modified fish (Thresher et al., 2014;
Akbari et al., 2015), or require the expensive regular addition
of modified fish to waterways (Cotton and Wedekind, 2007;
Thresher et al., 2014). However, a recent new genetic approach
(Maselko et al., 2017), although not an ideal complement to
CyHV-3, provided optimism that further genetic advances will
likely fill the void.

Latency Has Been Proven for CyHV-3
The ability to induce latent infections in their host is one of
the hallmarks of herpesviruses (Stevens, 1994). While there is
little doubt that CyHV-3 will eventually be shown to possess this
characteristic, there is currently no definitive evidence to support
this view. The case for latency for CyHV-3 has been built on
observations of carp collected from the field, usually with a sparse
clinical history, and no information on the dose of virus or the
route of infection (Eide, K. E. et al., 2011; Eide, K. et al., 2011; Xu
et al., 2013; Zheng et al., 2017).

Importantly, in many cases, wild-caught carp were collected
fromwaters that were at non-permissive temperatures for CyHV-
3, and then maintained at those non-permissive temperatures
for experimental work (Eide, K. E. et al., 2011; Eide, K. et al.,
2011; Reed et al., 2015, 2017; Lin et al., 2017). Herpesvirus latency
occurs naturally at permissive temperatures for the virus, so in
vivo studies on latency must also be conducted at permissive
temperatures. From reported studies on CyHV-3, it is impossible
to differentiate a latent infection from a low temperature-
induced, low-level persistent infection with suppressed virus
expression. The observation of almost a thousand-fold higher
frequency of latently-infected cells in an experimental koi carp
model comparedwith a recognized Epstein-Barrmodel of latency
(Reed et al., 2015) is consistent with this view. Recognition of
this difference will likely be important in understanding the
epidemiology of the disease in carp (and therefore in developing
approaches to viral biocontrol), but perhaps more importantly,
for biosecurity (where molecular detection of latently-infected
carp would prove much more difficult than those that were
persistently-infected).

Antibody Responses to CyHV-3 May Be

Detected in Surviving Carp for Many

Months Post Infection
If CyHV-3 were to be released in Australia, then detection of
specific antibodies against the virus in surviving carp will be
important in monitoring the spread of the virus in wild carp
populations. Interpretation of antibody data would be based on
earlier studies that have suggested that specific antibodies can be
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detected for up to 1 to 2 years post infection (Adkison et al., 2005;
Cabon et al., 2017).

However, Cabon et al. (2017) recognized that serial bleeding
of surviving CyHV-3-infected carp would likely trigger viral
reactivation with a subsequent boost to the titre of specific
antibodies. Examination of the four studies that studied the
dynamics of the specific antibody response to CyHV-3 (Ronen
et al., 2003; Perelberg et al., 2008; St-Hilaire et al., 2009; Cabon
et al., 2017) suggests that in each case reactivation of a latent or
persistent infection was likely to have occurred. The results of
such studies would then encourage the view that surviving carp
remain seropositive for much longer than actually occurs in a
natural setting.

It has long been recognized that, in sero-surveillance of fish,
the serological status of fish populations is more consistent than
individuals (Neave et al., 2017). Therefore, ideally, a serological
test should be sensitive enough to assess the antibody status of
individual fish, and, subsequently, allow correlation of this status
with sensitivity to re-infection. Neave et al. (2017) have taken
initial steps to achieve these aims.

Indirect Transmission of CyHV-3 Between

Fish Is as Important as Direct Transmission
Although there have been no specific studies on the relative
importance of direct versus indirect transmission of CyHV-3
between carp, observations on the biology of both the virus and
carp have suggested two hypotheses (McColl et al., 2016a).

Firstly, it is likely that direct skin-to-skin contact is, by far,
the most efficient form of transmission of virus, the implication
being that indirect transmission by waterborne virus (following,
for example, excretion from carp, or from birds or humans
dropping dead, infected carp in virus-free locations) is likely to
be much less efficient in transmission of CyHV-3. Secondly, we
hypothesize that transmissibility will be favored by the evolution
of low virulence strains of CyHV-3 that allow survival of many
infected carp, with subsequent regular recrudescence of infection
in, and direct transmission from, these survivors during breeding
aggregations (McColl et al., 2016a). If correct, the implication
of the latter hypothesis supports our earlier contention that
virus, alone, is unlikely to be effective as a biocontrol agent for
carp.

There May Already Be Viruses in Australian

Carp That Could Potentially Cross-React

With CyHV-3, Making Biocontrol Ineffective
Another important lesson from work on rabbit biocontrol with
RHDV was that an unrecognized, cross-reactive and avirulent
virus in the targeted pest species may confer protection from
a biocontrol virus (McColl et al., 2014). Gao et al. (2018)
have suggested that, based on genetic analysis of recognized
lineages of CyHV-3, a variant(s) of CyHV-3 has been present
in common carp for tens of thousands of years. This seems
consistent with: molecular evidence for a CyHV-3-like virus in
European common carp (Engelsma et al., 2013); an unusual
variant in New York State (Grimmett et al., 2006); and, a possible

variant, detected by PCR, in 13 of 14 wild common carp at a
location in Oregon where no major CyHV-3 outbreaks have been
documented (Xu et al., 2013).

Given the range in the severity of CyHV-3 outbreaks around
the world in recent decades (Hedrick et al., 2000; Matsui
et al., 2008; Thresher et al., 2018), it may become important
to correlate, if possible, the nature and titre of variants in carp
around the world with the likelihood of CyHV-3 outbreaks. In
particular, if CyHV-3 is to be used in Australia as a biocontrol
agent, it is essential that Australian carp be screened for avirulent
variants of CyHV-3. A preliminary cyprinid herpesvirus PCR
survey (based on a highly-conserved polymerase gene) of 849
carp in the Murray-Darling Basin failed to detect any cyprinid
herpesviruses (McColl and St Crane, 2013); this finding will be
compared with the current virome study.

FINAL COMMENTS

We have always been aware that the release of an exotic virus into
Australia’s waterways, if it were to occur, would be a contentious
event. Our aim from the outset has been to find reasons why
release of CyHV-3 would not be a good idea. Consistent with this
approach, we have already addressed some of the misconceptions
and misunderstandings discussed in this review. However, all of
these issues may become important as we continue to address the
safety and efficacy of CyHV-3 as a potential biocontrol agent in
Australia.

By openly addressing these issues, we hope to curtail ill-
informed discussion about the virus without ever discouraging
specific, evidence-based criticisms of the proposed use of
CyHV-3.
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